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Al has taken over the world

Frontpage news
Startup valuations
Big tech spending

Al research pace
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DJIA 4471358 A 289.33 0.65%

NASDAQ 19341.83 v 3.1%

STOXX 600 529.69 ¥ 0.1%

10-YR.TREAS. 4 24/32, yield 4.529%

OIL $73.17 v $1.49

GOLD $2,737.50 v $39.80

EURO $1.0493 YEN 154.51

What’s
News

Business & Finance
= e

# Financial markets swooned
at the emergence of a dark-

horse power in artificial intel-
ligence, which sent shares of
Nvidia down 17% and posed a
fresh threat to the multitrillion-
dollar boom in the US. tech sec-
tor. The S&P 500 and Nasdaq
slid 1.5% and 31%, respectively,
while the Dow rose 0.7%. A1, A4

¢ The Senate confirmed Scott
Bessent as treasury secretary,
putting the longtime investor at
the center of Trump's efforts to
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DeepSeek Flips Script on Al

Chinese dark horse
emerges, threatening
a market darling and
other big tech stocks

For two years, markets’ be-
lief that the rise of artificial in-
telligence would usher in a new

By Gunjan Banerji,
Asa Fitch
and Karen Langley

era of productivity growth has
fueled trillions of dollars in
stock-market gains.

Nvidia, the maker of the
computer chips at the heart of

the Al boom, has been in the
vanguard of this advance. Wall
Street has perceived the com-
pany to have an almost unb-
reachable defense against com-
petition with its offerings of
high-tech chips. The company’s
rapid growth and windfall prof-
its have helped push other tech-
nology firms and the Nasdaq
Composite Index to record after
record, with giddy investors ex-
pecting more of the same down
the road.

On Monday, the mood turned
sour. DeepSeek, a dark-horse
power in artificial intelligence,
emerged from China. That rat-
tled big tech stocks, led by a
plunge of almost $600 billion in

Nvidia, which only last week
was the world’s most valuable
company. Nvidia’s fall marked
the largest one-day loss in mar-
ket value for any public com-
pany.

DeepSeek released last week
an Al model that appeared to
perform on par with a cutting-
edge counterpart from OpenAl,
the U.S. firm at the heart of the
Al craze. The twist: Creative en-
gineering tricks meant Deep-
Seek needed far less computing
power. The upshot is that the Al
models of the future might not
require as many high-end
Nvidia chips as investors have
counted on.
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Market
Plunges
As China
Firm Stirs
Worries

Fresh threat to Alin
the U.S. wipes out
about a trillion dollars
from stock market

Financial markets swooned
on Monday at the emergence of



Al has taken over the world?

Impact

Search

Coding




Hypothesis 1: Just wait, it's coming
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FrontierMath: Advanced mathematics
ARC-AGI: Abstract reasoning (semi-secret evaluation)
» SWE-bench: Real-world software engineering
» GPQA: Graduate-level science
* AIME 2024: Mathematics competition for elite students

Source: International Al Safety Report, Jan 2025



Hypothesis 2: Specialization matters!

People specialize to become experts

e E.g. scientists and athletes
e E.g.,the human brain itself

Al will need to specialize

e Accuracy
e Efficiency



It's not either/or
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How good are today's specialized FMs?
Toto: An Observability TSFM



Before: Train

directly on
supervised data

BERT Moment:
Pre-train on
massive corpora,
then fine-tune

After: Nobody

uses supervised
learning alone

2012

2018

NLP Timeline



How good are today's O - & B
Specialized FMs? (Y "™

[Gupta*-Xu*-Cheng-Shen-Shen-T-Khodak, ICLR25]

Genomics Satellite Imaging

Time Series



GLUE score improvement
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How good are today’s Bl - SCEIREOEN 51801
Specialized FMs? (Y "™

[Gupta*-Xu*-Cheng-Shen-Shen-T-Khodak, ICLR25]

Genomics  Satellite Imaging Don't assume specialized FMs work!

Baselines & benchmarks are important

Time Series



How good are today's specialized FMs?
Toto: An Observability TSFM

Datadog Al Research




What is
Observability?



Observing/monitoring: The Human Body

¥ bataDoG

Al-generated Illustrations



Observing/monitoring: Computer Systems
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1,000s of hosts, pods,
containers, etc.
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. Trillions

of data points/hour



Types of Observability Data

Telemetry Data

Metrics

Logs

Traces

Network Flows
Source Code
Cloud Cost

Cl / CD Pipelines
Security Signals

Human Interaction Data

Monitors configuration

Dashboards configuration

Notebooks configuration

Interactive usage during an investigation

¥ baTaDOG



Forecasting & Anomaly Detection

Jul 9, 00:30 - Ongoing

Al Opportunities

T T
12:00 Mon 9 12:0(¢

Root Cause Analysis Production Code Repair

— @ Henes whaT HappENED 33 shopist2034  FixaAvaiLaBLe )
o Validated The error is caused by an infinite recursion in the _recommended_authors method that doesn't have a proper termination condition.
@ inconciusve More Detalls’ >
Invaldoted
6‘ SUGGESTED CODE CHANGE
- - ~ django-email/conduit/apps/profiles/views.py (| O -
A F 41,18 +41,28 @@ class ProfileRetrieveAPIView(RetrieveAPIView
41 a1 def recommended_authors (self, profile
42 42 ecommended authors are computed by going through follow
43 4 graph (follows of follows)
- ) 44 return self._recommended_authors(profile.
a urn self._recommended_authors(profile e, set
P P [T ped R Te S AR T R T AT S s TN aaha

a7 # DEMOENG-845 - Intentional RecursionError
46 def _recommended_authors(self, profile, cache, depth=8, visited=None
47 Fixed DEMOENG-845 - Preventing RecursionError

s o e a8 if visited is None
49 visited = set
56
Gt Nt e — 51 # Limit recursion depth and prevent revisiting profiles
52 if depth > 3 or profile.user.username in visited
return [
e e e —— visited.add(profile.user.username




Forecasting & Anomaly Detection

Can we just apply existing
Time Series FMs (TSFMs)?

T T —
12:00 Mon 9 12:0(

Promise:
e Several models in recent years
e Zero shot capabilities

¥ baTaDOG



Forecasting & Anomaly Detection

_____________________

1 Jul 9, 00:30 - Ongoing
1

Can we just apply existing
Time Series FMs (TSFMs)?

T T 1
12:00 Mon 9 12:0(¢

é 0.3
Issues: m
e Don't beat supervised baselines g ™ S
e Not tailored to observability s
£ -0.1
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Forecasting & Anomaly Detection

Can we just apply existing
Time Series FMs (TSFMs)?

Our work: specialize eval, [
data & modeling for .
Observability! L |

total pretraining + fine-tuning series (log-scale)

¥ baTaDOG



BOOM

New Observability Benchmark
Largest time series benchmark

Comprised of Real Data

Internal observability data from
Datadog

Open Source
Apache 2.0
27K HF downloads
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Captures challenge of real-world observability data

a4 )
N
=
< Dataset # Series # Variates # Points
g
S Boom 2,807 32,887 350 M
5 BOOMLET 32 1,627 23M
g GIFT-Eval 144,246 147,688 158 M
5 LSF 6 370 11M
=
a

Principal Component 1
_ FNeLp P y
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ToTo

Time Series Foundation Model
150M param decoder-only architecture

Optimized for Observability

And also SOTA on general-purpose
time series forecasting

Open Weights
Apache 2.0
~8M HF downloads

e
Foundation Model Training Corpora
Observability
16 Toto Public
w
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(Datadog internal data only)
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Data Collection (Datadog internal data only)

A5

Dashboards
|
A L
- - g |~ Collect each query over:
e Multiple time slices
A User-generated Numeric o Different time
metric queries  time series data intervals
\Ja
Monitors

¥ bataDoG



0

High-cardinality
multivariate data

Skewed, heavy
tailed distributions

_/\X_
Extreme dynamic
range,

nonstationarity

Proportional Attention: judiciously
attend across covariates

Student-T mixture & robust loss: for
improved modeling and learning

Patch-based causal scaling: address
highly non-stationary TS

¥ bataDoG



These modifications make a big difference

4 )
Ablation Results
No Student-T No Causal
30 Mixture Scaling
~3
‘ No Rob
~ o Robust
- 15 Loss
- No
< 8 Factorized
Attention
0
\ )
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BOOM Results

0.4 A
+J
3
= 0.3 1
S
o 0.2
| -
3
A 0.1+ Supervised Baseline
ol
o 0.0 1
@)
—0.1 A

102 103 104 10° 10° 107 108 10°
total pretraining + fine-tuning series (log-scale)



Specialized Observability Datadog Al Research
FMs

[Cohen*-Khwaja*-et al ]

BOOM Results (Rank ) GIFT-Eval Results (Rank )
‘ TimeseM SMOP° 2l ] G TSFMs have achieved their
S N “BERT moment”!
Toto 4

2 . Specialization matters

***At time of release***




Ongoing Work

A ol

Product Applications Multimodality Scaling

¥ bataDoG



Ongoing Work

A ol

Product Applications Multimodality Scaling

¥ bataDoG



GPU Monitoring: how many GPUs will | need?

Device distribution across your fleet

Visualize GPU allocation to optimize capacity planning and performance

DEVICE ALLOCATION OVER TIME

W/MWV\W/

T T
12:00 Mon 10 12:00 Tue 11 Now

600

) Total @@ Allocated Active

Important for budgeting/planning
Mature production tool already exists

Natural application of Zero Shot Toto

¥ bataDoG



How does Toto perform?

No clear winner between ZS Toto and mature production tool

ZS Toto preferred by humans in 71% of cases in blind evaluation

In production as of last month!

¥ baTaDOG



Forecasting Cloud Costs: how much S will | spend?

Important for budgeting/planning

Also a seemingly natural application of Zero Shot Toto

¥ bataDoG



Forecasting Cloud Costs: how much S will | spend?
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Important for budgeting/planning
Challenges:

Large, irregular seasonality effects (e.g. day-of-month)

Not much historical data available

Product-specific eval differs from typical TSFM benchmarking
Strong latency constraints

¥ baTADOG



Zero shot Toto misses the spikes

tttttttttttttttttttttt
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Especially tricky b/c of uneven period lengths

¥ bataDoG



:@'_ Provide Toto with ‘exogenous
“2°  variable, e.g., day of month!

¥ bataDoG
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Exogenous variable fine-tuning

Input preprocessing Training Inference
e Use dummy variable for first of the e Mask loss for e Inject known
month exogenous variable future exogenous
e Shifted exogenous variables one values during
patch into the future decoding

e Stacked along variate dimension

farget E Y, Y3 Yna J

A l Sai
predict predict predict
o e
input Y, Y, oo Yo

shifted
left  m—

exogenous covariate
one patch

< patches »

¥ bataDoG



Forecasting Cloud Costs

CHALLENGES
Irregular seasonality effects

Product-imposed latency
constraints

Product-specific evaluation

SOLUTIONS

Toto + FT + Exogenous variables

Toto inference meets latency
requirements

New benchmark & metrics

. DATADOG



The end result...

17% improvement over baseline
41% over zero-shot
Satisfies latency reqgs

Coming soon: Support for
MWMMWMWW fine-tuning and exogenous variables
e https://qgithub.com/DataDog/toto

zzzzzzzzzzzzzzzzzzzzzzzzzzzz

¥ bataDoG


https://github.com/DataDog/toto

Autoscaling — Forecast demand so services can right-size

Toto applications,

next steps

Predictive alerting — Forecast issues before they happen (and
ideally fix them w/o needing to page an engineer)

¥ bataDoG 45



Datadog Al Research:
Vertical Al for observability

We are hiring!




