Do We Really Need Another Time-Series Forecasting Model?

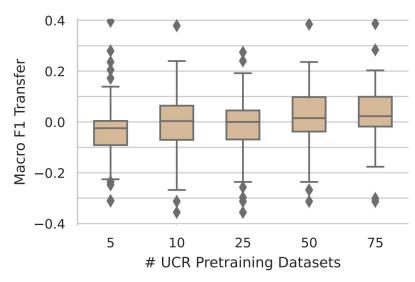
Maurice Kraus

About AIML Lab

- Who we are: A research group focused on various different fields in machine learning
- Based in Germany, TU Darmstadt
- Prof. Kristian Kersting

Rise & Challenges of TSFM

- NLP & Vision FMs inspired universal, zero-shot TS forecasting
- Early multi-dataset pretraining (XIT) proved cross-dataset transfer is possible
- Modern TSFMs scale via huge real+synthetic corpora + LLM influenced architectural choices



(b) Finetuning on a hold-out set of 25 datasets each.

^[1] Kraus, Maurice; Divo, Felix et al.

[&]quot;United We Pretrain, Divided We Fail! Representation Learning for Time Series by Pretraining on 75 Datasets at Once." Preprint, 2023.

Mixed Evidence Baseline

- Benchmark results vary widely.
- Lightweight supervised models often match TSFMs.
- Benchmarks disagree
 - GIFT-Eval vs OpenTS vs FoundTS vs TSLib
 - Challenged by Lorenzo et al. 2025 [2]
- No model dominates across tasks.

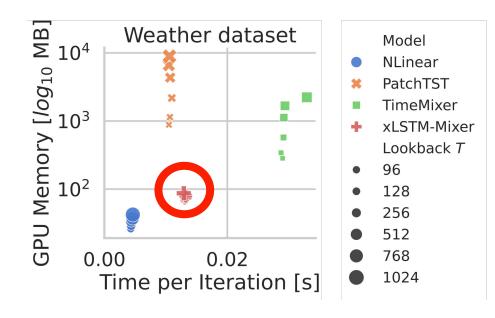
Do We Always Need a Foundation Model?

- Universal vs purpose-built trade-off.
- Zero-shot helps when data is scarce.
- Supervised/domain specific wins in data-rich settings (e.g., finance).
- Specialization can exceed generalization.
- Gupta et al. 2024 shows marginal gains of fine tuned over fully supervised in medical data

Efficiency

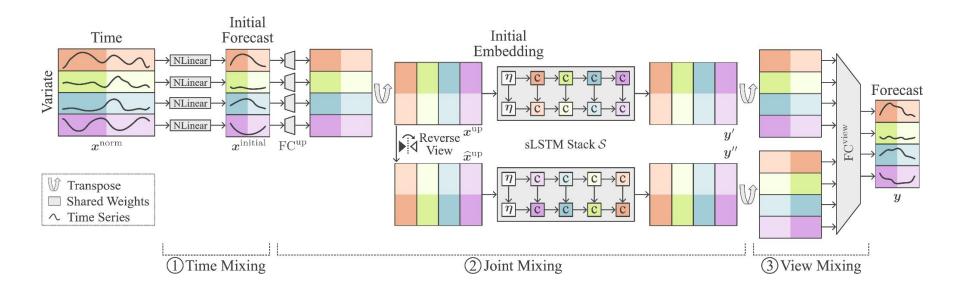
Why xLSTMs here?

- xLSTMs [4] use scalar memories and gating → strong sequence modeling without quadratic attention.
- Very low GPU memory and competitive iteration time.
- Fits edge / constrained deployments.



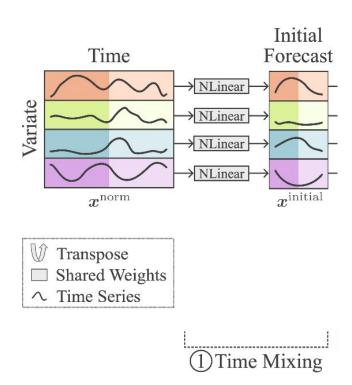
xLSTM-Mixer:

Multivariate Time Series Forecasting by Mixing via Scalar Memories [5]



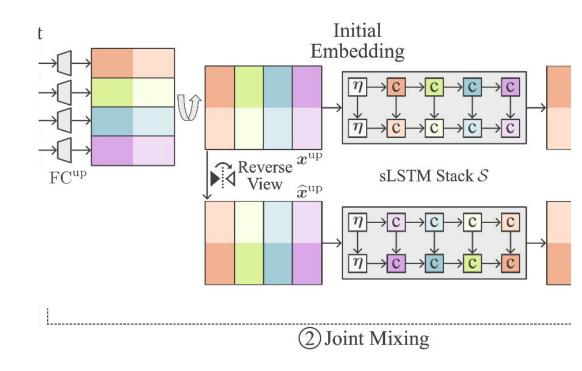
Time Mixing

 Start with a shared linear forecast [3] (cheap, channel-independent).



Joint Mixing

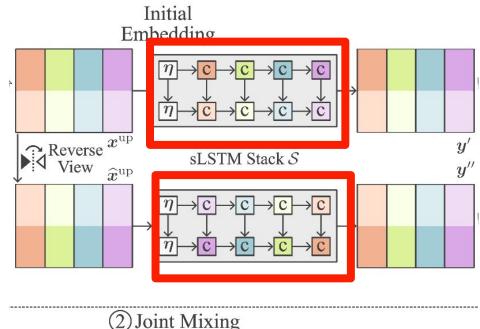
- Start with a shared linear forecast [3] (cheap, channel-independent).
- Refine it with xLSTM block(s) that mix time + variates.



[4] Liu, Yong, Tengge Hu, Haoran Zhang, et al. "Itransformer: Inverted Transformers Are Effective for Time Series Forecasting." *ICLR*, 2023.

Joint Mixing

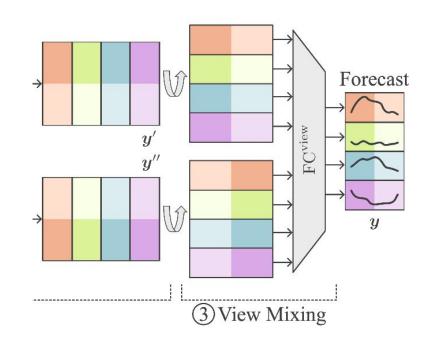
- Start with a shared linear forecast [3] (cheap, channel-independent).
- Refine it with xLSTM block(s) that mix time + variates.
- **Two views** (forward + reversed) → **view mixing** → final forecast



(2) Joint Mixing

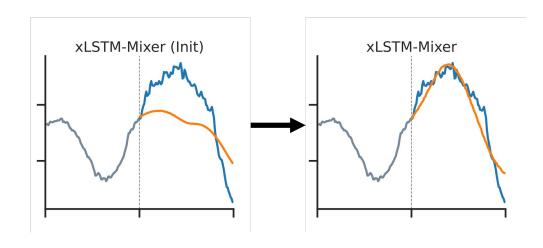
View Mixing

- Start with a shared linear forecast [3] (cheap, channel-independent).
- Refine it with xLSTM block(s) that mix time + variates.
- Two views (forward + reversed)
 → view mixing → final forecast
- Result: As expressive as big models yet parameter-frugal like RNNs.



Iterative refinement

- Think: 'rough guess → smarter correction'.
- Early stage handles what's easy xLSTM stages focus capacity on what's hard.
- Multi-view mixing regularizes and reduces parameters via shared weights.



Benchmark Performance

- SOTA on standard multivariate benchmarks.
- Strong probabilistic forecasts on GIFT-Eval.
- Can be used in a versatile fashion

Models	Recurrent			Mixer			MLP		
	xLSTM- Mixer	xLSTMTime 2024	e LSTM 1997 [†]	TimeMix.++ 2025a	TimeMix. 2024a	TSMixer 2023c	CycleNet 2024	DLinear 2023	TiDE 2023
Dataset	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
Weather	0.219 0.250	0.222 0.255	0.444 0.454	0.226 0.262	0.222 0.262	0.225 0.264	0.223 0.264	0.246 0.300	0.236 0.282
Electricity	0.153 0.245	0.157 0.250	0.559 0.549	0.165 0.253	0.156 <u>0.246</u>	0.160 0.256	0.156 0.251	0.166 0.264	0.159 0.257
Traffic	0.392 0.253	0.391 <u>0.261</u>	1.011 0.541	0.416 0.264	<u>0.387</u> 0.262	0.408 0.284	0.403 0.282	0.434 0.295	0.356 <u>0.261</u>
ETTh1	0.397 0.420	0.408 0.428	1.198 0.821	0.419 0.432	0.411 0.423	0.412 0.428	0.435 0.440	0.423 0.437	0.419 0.430
ETTh2	0.340 0.382	0.346 0.386	3.095 1.352	0.339 0.380	0.316 0.384	0.355 0.401	0.367 0.405	0.431 0.447	0.345 0.394
ETTm1	0.339 0.366	0.347 0.372	1.142 0.782	0.369 0.378	0.348 0.375	0.347 0.375	0.360 0.388	0.357 0.379	0.355 0.378
ETTm2	0.248 0.307	0.254 <u>0.310</u>	2.395 1.177	0.269 0.320	0.256 0.315	0.267 0.322	0.263 0.324	0.267 0.332	<u>0.249</u> 0.312

Model	MASE ↓	CRPS ↓	Rank (CRPS) ↓
TiRex	0.724	0.498	1
xLSTM-Mixer (ours)	0.780	0.510	2
TEMPO_ensemble	0.862	0.514	3
Toto_Open_Base_1.0	0.750	0.517	4
TabPFN-TS	0.771	0.544	5
YingLong_300m	0.798	0.548	6
timesfm_2_0_500m	0.758	0.550	7
YingLong_110m	0.809	0.557	8
sundial_base_128m	0.750	0.559	9
YingLong_50m	0.822	0.567	10

The Current Landscape of Architectures

Model	From	Architecture	#Parameters
TimesFM	Das et al. (2023)	Transformer (Decoder)	200M
Chronos-1	Ansari et al. (2024)	Transformer (Encoder-Decoder)	20M - 710M
Chronos-2	Ansari et al. (2025)	Transformer (Encoder)	120M
Moirai 1.0	Woo et al. (2025)	Transformer (Encoder)	14M-311M
Moirai 2.0	Liu et al. (2025)	Transformer (Decoder)	11M-?
FlowState	Graf et al. (2025)	SSM + Functional Bases	2.6M-9.1M
TiRex	Auer et al. (2025)	Recurrent (xLSTM)	35M
xLSTM-Mixer	Kraus et al. (2025)	Recurrent (xLSTM) + Mixing	Per Dataset ~(50k-100M)

Versatility needs to be shown for true FMs

- Forecasting alone doesn't prove foundation status
- We need FMs that work across modalities, tasks, and domains
- Models: SensorLM [7], ChatTS [8], LLaSA [9] → TS ↔ language, richer reasoning
- Benchmarks: QuAnTS [10], BEDTime [11] → TS QA + natural-language description

^[7] Zhang, Yuwei; Ayush, Kumar et al. "SensorLM: Learning the Language of Wearable Sensors", NeurIPS 2025

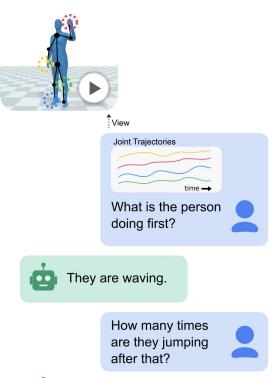
^[8] Xie, Zhe; Li, Zeyan et al. "ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning", PVLDB 2025

^[9] Imran, Asif; Khan, Mohammad Nur Hossain et al. "LLaSA: A Sensor-Aware LLM for Natural Language Reasoning of Human Activity from IMU Data", UbiComp 2025 [10] Divo, Felix; Kraus, Maurice et al. "QuAnTS: Question Answering on Time Series", Preprint, 2025.

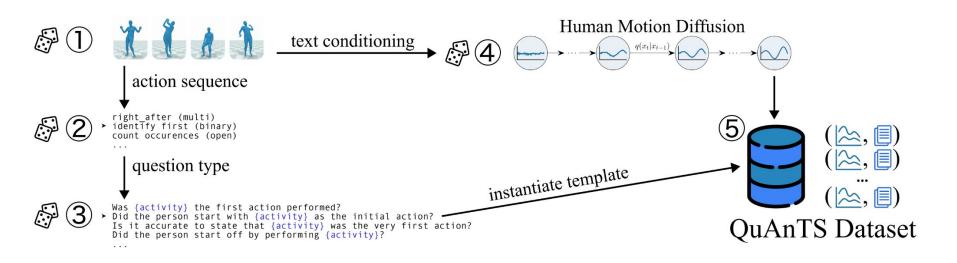
^[11] Sen, Medhasweta; Gottesman, Zachary et al. "BEDTime: A Unified Benchmark for Automatically Describing Time Series", Preprint, 2025.

QuAnTS: Question Answering on Time Series

- Users want to be able to speak with time series
- "Why did sales drop?" "Find the anomaly."
- The Challenge: LLMs are suboptimal at processing raw numerical time series directly.



QuAnTS: Question Answering on Time Series



QuAnTS: Question Answering on Time Series

- ChatTS suffers big drop in performance
- High agreement of our xQA and humans

	System	Accuracy (\uparrow)	Precision (\uparrow)	Recall (\uparrow)	F1 (†)
	Ablation: Only Question Ablation: Only TS	$64.47\% \ 0.28\%$	$64.47\% \ 0.28\%$	$64.47\% \ 0.28\%$	64.38% $0.28%$
\mathbf{Multi}	Humans $(n = 820)$	86.59%	86.55%	86.61%	86.54%
	$\begin{array}{c} \textbf{Naive: TS} + \textbf{Question} \\ \textbf{ChatTS} \end{array}$	$\frac{9.69\%}{30.40\%}$	$\frac{9.69\%}{30.13\%}$	$\frac{9.69\%}{30.58\%}$	$\frac{9.62\%}{29.12\%}$
	xQA-Llama on GT xQA-Qwen on GT xQA-Llama on AE xQA-Qwen on AE	81.50% 88.01% 81.18% 87.97%	81.64% 88.04% 81.30% 87.99%	81.51% 88.03% 81.19% 87.98%	81.50% 88.01% 81.18% 87.97%

xLSTM-Mixer

TSFMs are the Future, But...

- No "One Size Fits All" (Yet): We do not have a "BERT" that solves everything perfectly.
- Forecasting models slowly get better and better.
- The Data Scale Argument: If a lot of data is available, efficient supervised training on domain data beats zero-shot generalization.
- Proper ablations are still needed

Do We Really Need Another Time-Series Forecasting Model?

The Hybrid Future:

- High-Volume/Low-Latency: Efficient supervised models for large amounts of data (e.g., xLSTM-Mixer).
- Specific Tasks: Domain-Specific FMs.

With funding from the:

